Exponentiability in Lax Slices of Top

نویسنده

  • SUSAN NIEFIELD
چکیده

We consider exponentiable objects in lax slices of Top with respect to the specialization order (and its opposite) on a base space B. We begin by showing that the lax slice over B has binary products which are preserved by the forgetful functor to Top if and only if B is a meet (respective, join) semilattice in Top, and go on to characterize exponentiability over a complete Alexandrov space B.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponentiability in Homotopy Slices of Top and Pseudo-slices of Cat

We prove a general theorem relating pseudo-exponentiable objects of a bicategory K to those of the Kleisli bicategory of a pseudo-monad on K. This theorem is applied to obtain pseudo-exponentiable objects of the homotopy slices Top//B of the category of topological spaces and the pseudo-slices Cat//B of the category of small categories.

متن کامل

Lax Presheaves and Exponentiability

The category of Set-valued presheaves on a small category B is a topos. Replacing Set by a bicategory S whose objects are sets and morphisms are spans, relations, or partial maps, we consider a category Lax(B,S) of S-valued lax functors on B. When S = Span, the resulting category is equivalent to Cat/B, and hence, is rarely even cartesian closed. Restricting this equivalence gives rise to expon...

متن کامل

Exponentiable morphisms of domains

Given a map f in the category ω-Cpo of ω-complete posets, exponentiability of f in ω-Cpo easily implies exponentiability of f in the category Pos of posets, while the converse is not true. We find then the extra conditions needed on f exponentiable in Pos to be exponentiable in ω-Cpo, showing the existence of partial products of the two-point ordered set S = {0 < 1} (Theorem 1.8). Using this ch...

متن کامل

Exponentiability in categories of lax algebras

For a complete cartesian-closed category V with coproducts, and for any pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is shown that the category of lax reflexive (T,V)-algebras is a quasitopos. This result encompasses many known and new examples of quasitopoi. Mathematics Subject Classification: 18C20, 18D15, 18A05, 18B30, 18B35.

متن کامل

EXPONENTIABILITY IN CATEGORIES OF LAX ALGEBRAS Dedicated to Nico Pumplün on the occasion of his seventieth birthday

For a complete cartesian-closed category V with coproducts, and for any pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is shown that the category of lax reflexive (T,V)-algebras is a quasitopos. This result encompasses many known and new examples of quasitopoi.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005